Relaxed Lasso

نویسنده

  • Nicolai Meinshausen
چکیده

The Lasso is an attractive regularisation method for high dimensional regression. It combines variable selection with an efficient computational procedure. However, the rate of convergence of the Lasso is slow for some sparse high dimensional data, where the number of predictor variables is growing fast with the number of observations. Moreover, many noise variables are selected if the estimator is chosen by cross-validation. It is shown that the contradicting demands of an efficient computational procedure and fast convergence rates of the `2-loss can be overcome by a two-stage procedure, termed the relaxed Lasso. For orthogonal designs, the relaxed Lasso provides a continuum of solutions that include both softand hard-thresholding of estimators. The relaxed Lasso solutions include all regular Lasso solutions and computation of all relaxed Lasso solutions is often identically expensive as computing all regular Lasso solutions. Theoretical and numerical results demonstrate that the relaxed Lasso produces sparser models with equal or lower prediction loss than the regular Lasso estimator for highdimensional data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variable Inclusion and Shrinkage Algorithms

The Lasso is a popular and computationally efficient procedure for automatically performing both variable selection and coefficient shrinkage on linear regression models. One limitation of the Lasso is that the same tuning parameter is used for both variable selection and shrinkage. As a result, it typically ends up selecting a model with too many variables to prevent over shrinkage of the regr...

متن کامل

Extended Comparisons of Best Subset Selection, Forward Stepwise Selection, and the Lasso Following “Best Subset Selection from a Modern Optimization Lens” by Bertsimas, King, and Mazumder (2016)

In exciting new work, Bertsimas et al. (2016) showed that the classical best subset selection problem in regression modeling can be formulated as a mixed integer optimization (MIO) problem. Using recent advances in MIO algorithms, they demonstrated that best subset selection can now be solved at much larger problem sizes that what was thought possible in the statistics community. They presented...

متن کامل

Performance Analysis Of Regularized Linear Regression Models For Oxazolines And Oxazoles Derivitive Descriptor Dataset

Regularized regression techniques for linear regression have been created the last few ten years to reduce the flaws of ordinary least squares regression with regard to prediction accuracy. In this paper, new methods for using regularized regression in model choice are introduced, and we distinguish the conditions in which regularized regression develops our ability to discriminate models. We a...

متن کامل

Some Two-Step Procedures for Variable Selection in High-Dimensional Linear Regression

We study the problem of high-dimensional variable selection via some two-step procedures. First we show that given some good initial estimator which is l∞-consistent but not necessarily variable selection consistent, we can apply the nonnegative Garrote, adaptive Lasso or hard-thresholding procedure to obtain a final estimator that is both estimation and variable selection consistent. Unlike th...

متن کامل

Adaptive Generalized Fused-Lasso: Asymptotic Properties and Applications

The Lasso has been widely studied and used in many applications over the last decade. It has also been extended in various directions in particular to ensure asymptotic oracle properties through adaptive weights (Zou, 2006). Another direction has been to incorporate additional knowledge within the penalty to account for some structure among features. Among such strategies the Fused-Lasso (Tibsh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2007